With the aid of this formula, the measuring results are discussed and numerical values for the parameters of the tunnelling model are determined. ## 2. Experimental Pressure was generated with the thermal-compressor method. Helium gas was used as the pressure-transmission medium. The apparatus is described in [11]. The pressure was determined by a Bourdon-type manometer to an accuracy of $\Delta p = \pm 16$ bar. For temperature measurement a platinum resistance thermometer was used. The single crystals we received from the Physics Institutes of the Czechoslovakian Academy of Sciences in Prague and the Polish Academy of Sciences in Poznań. The KH₂AsO₄ crystals had a surface of about 30 mm² and a thickness of about 1 mm, and the RbH₂PO₄ crystals were 80 mm² and 1.7 mm, respectively. Silver and gold electrodes have been evaporated under high vacuum. The capacity was measured at a frequency of 800 Hz, at an electric field strength E < 20 V/cm for $\text{KH}_2 \text{AsO}_4$ and E << 8 V/cm for RbH₂PO₄, respectively. ## 3. Results Fig. 1 and 2 show the anomalies of the dielectric constants in the phase transition region for a KH₂AsO₄ and a RbH₂PO₄ crystal. In both cases, by Fig. 2. Temperature dependence of the dielectric constant under different pressure for a RbH₂PO₄ crystal in the phase-transition re-gion, measured with decreasing temperature